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Abstract
We consider the evolution of a two-mode system of bosons under the action of
a Hamiltonian that generates linear SU(2) transformations. The Hamiltonian
is generic in that it represents a host of entanglement mechanisms, which can
thus be treated in a unified way. We start by solving the quantum dynamics
analytically when the system is initially in a Fock state. We show how the
two modes get entangled by evolution to produce a coherent superposition
of vortex states in general, and a single vortex state under certain conditions.
The degree of entanglement between the modes is measured by finding the
explicit analytical dependence of the Von Neumann entropy on the system
parameters. The reduced state of each mode is analysed by means of its
correlation function and spatial coherence function. Remarkably, our analysis
is shown to be equally as valid for a variety of initial states that can be prepared
from a two-mode Fock state via a unitary transformation and for which the
results can be obtained by mere inspection of the corresponding results for an
initial Fock state. As an example, we consider a quantum vortex as the initial
state and also find conditions for its revival and charge conjugation. While
studying the evolution of the initial vortex state, we have encountered and
explained an interesting situation in which the entropy of the system does not
evolve whereas its wavefunction does. Although the modal concept has been
used throughout the paper, it is important to note that the theory is equally
applicable for a two-particle system in which each particle is represented by its
bosonic creation and annihilation operators.
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1. Introduction

Non-classical properties of quantum states are actively being studied for their relevance in
quantum computation. It is known that quantum entanglement is the key to performing
communication and information processing tasks that cannot be realized classically. For
this reason, there has been a surge of activity towards preparing, identifying and quantifying
entangled systems [1].

An important source of quantum entanglement has been the polarization-entangled two-
photon states generated from type-II phase-matched parametric down conversion [2]. A
variety of other entangled states can be produced by using various polarizing components.
More recently, the subject of quantum information processing has been given a new direction
with the realization that a number of quantum logic operations can be performed using single
photons and methods of linear optics [3]. Even a method for quantum teleportation was
proposed and implemented [4]. Clearly one needs to examine, in full generality, the question
of transformation of an arbitrary input state by a device which can mix different states.

We note that a number of special cases for the generation of entanglement using linear
optical devices have been investigated. Huang and Agarwal [5] considered multimode systems
described by a Hamiltonian that is quadratic in the mode operators. They derived conditions
for the generation of an entangled state when the input state was represented by a Gaussian
density matrix. Their treatment covered a large class of states including squeezed coherent
states and even states with thermal noise. However, they did not consider the case of input
fields in Fock states. More recently and more specifically, Kim et al [6] examined the question
of the generation of entangled states by a beam splitter using Fock states as input fields.

In this paper we specialize to intensity- or number-preserving linear transformations
belonging to the SU(2) group. For two-mode states characterized by the annihilation operators
a and b, such transformations can be generated by evolution under a Hamiltonian of the form

H = g(a†b eiφ + h.c) + �(a†a − b†b) (1)

where g and � are real constants. Introducing the generators of the SU(2) group as

J1 = (a†b + ab†)/2, J2 = (a†b − ab†)/2i, J3 = (a†a − b†b)/2, (2)

the Hamiltonian (1) can be rewritten in the form

H = v1J1 + v2J2 + v3J3 (3)

with

v1 = 2g cos φ, v2 = −2g sin φ, v3 = 2�. (4)

Motivation for the present work comes from the realization that a Hamiltonian of the
form (1) can represent a host of entanglement mechanisms which can thus be treated in a
unified way. Several examples are given as follows.

The beam splitter, used by many authors as an entangler [7], can be described by (1) for
� = 0 if one defines its amplitude reflection and transmission coefficients by cos g and sin g

respectively, while φ denotes the phase difference between the reflected and transmitted fields.
The parametric frequency conversion by a strong pump field (of frequency ω) in χ(2)

material can also be represented by an interaction Hamiltonian of the form (1) [8] with � = 0.
Here a and b are the annihilation operators for the signal (of frequency ωa) and the idler
(of frequency ωb) respectively, g is a coupling constant that depends on the amplitude of the
pump mode and φ = �ωt where �ω = ω + ωb − ωa . We should note, however, that this
Hamiltonian does not support parametric down conversion.
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Polarizing elements such as half- and quarter wave plates also can act as entangling
devices. Quantum mechanically, polarized light is represented by a pair of orthogonal
polarization modes (described by boson mode operators a, b), or as points on the Poincaré
sphere. The effect of a polarizing element on the field is a SU(2) transformation of the mode
operators which corresponds to rotations on the Poincaré sphere. The transformations are
generated by Hamiltonians of the form (1).

Finally, following the work of Wineland et al [9], we consider a single laser cooled ion
confined in a two-dimensional harmonic trap. The internal and motional degrees of freedom
of the ion can be coupled by applying two classical laser beams. If a and b represent the
two oscillatory modes of the ion’s quantized motion and φ denotes the difference in phase
between the two applied fields, then, under certain conditions [10], the Hamiltonian for the
ion’s motion will be of the form (1) in the interaction picture.

The present work is also relevant in the context of parallel developments in the field
of optical vortices. An optical vortex of order l centred at the origin (r = 0) has a field
distribution of the form F(r) exp(ilφ). The distribution is such that the field intensity tends
to zero as r → 0 whereas the phase shift in one cycle around the origin is 2πl, where l is
an integer. The azimuthal mode index l has a physical meaning in that the vortex carries an
orbital angular momentum of lh̄ per photon [11]. This angular momentum can be imparted
to microscopic particles in order to manipulate them optically [12, 13]. In recent years, this
understanding has led to considerable interest in the generation and study of optical vortices
both in free space [14] and in guided media [15, 16].

A physically realizable field distribution that contains optical vortices is a higher-order
Laguerre–Gaussian (LG) beam whose waist-plane field amplitude is given by [17]

uLG
mn(x, y, ω) =

√
2

πω2

(−1)pp!√
m!n!

e−iθ(m−n)(r
√

2/ω)|m−n|L|m−n|
p (2r2/ω2) e−r2/ω2

(5)

where r2 = x2 + y2, θ = arctan(y/x), ω is the beam waist, p = min(n,m) and Ll
p(x) is a

generalized Laguerre polynomial. LG beams can be produced directly from a laser [18]. In
fact, in a hydrodynamic formulation of laser beam dynamics in terms of LG modes, vortices
were found to occur in transverse laser patterns [19, 20]. Usually, however, LG beams are
produced by the conversion or combination of Hermite–Gaussian (HG) beams that are emitted
by most laser cavities. This is made possible because of the fact that any LG mode can
be expressed in terms of HG modes. The waist-plane amplitude of the HG modes has the
form

uHG
n,m(x, y, ω) = �n(x, ω)�m(y, ω), (6)

where

�n(x, ω) =
( √

2√
π2nwn!

)1/2

Hn(
√

2x/w) exp(−x2/w2) (7)

and Hn(x) is a Hermite polynomial. The decomposition of a LG mode in terms of HG modes
is given as [14]

uLG
n,m(x, y, ω) =

m+n∑
k=0

ikb(n,m, k)uHG
m+n−k,k(x, y, ω) (8a)

b(n,m, k) =
√

(n + m)!k!

2n+mn!m!

1

k!

dk

dt k
[(1 − t)n(1 + t)m]�t=0. (8b)
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The vortices as discussed above appear on the transverse amplitude profile of classical
wave fields. Vortices can also occur in the configuration space representation of quantum
systems of matter or radiation. Since the HG modes are also the energy eigenfunctions
of a quantum oscillator, quantum vortices should arise in the study of wave packets of a
quantum system that could be a two-dimensional harmonic oscillator like an ion in a two-
dimensional trap. For a two-mode radiation field characterized by the annihilation operators
a, b, and represented by a state vector |ψ〉, the quantum vortex will appear in the quadrature
distribution |〈x, y|ψ〉|2 where |x, y〉 is the eigenvector of (a + a†)/

√
2 and (b + b†)/

√
2.

Quadrature distributions can be measured by a homodyne method [21]. Vortices of matter
will appear in the configuration space probability distribution. Recently it has been shown
that the HG and LG modes are unitarily related [22] and the Poincaré sphere [23] representing
LG beams has an underlying SU(2) structure [24]. The Hamiltonian (1) is therefore ideally
suited to explore the possibility of generating quantum vortices.

The objective and the plan of the paper are as follows. In section 2 we obtain the state
vector and the wavefunction of a two-mode system which is initially in a Fock state and is
acted upon by the Hamiltonian (1). We show how the two modes get entangled by evolution
and under certain conditions evolve into a vortex state. The degree of entanglement between
the modes is measured by finding the dependence of the von Neumann entropy on the system
parameters. In section 3 the above analysis is carried out when the two-mode system is initially
in a state that can be obtained from a Fock state via a unitary transformation. As an example,
a quantum vortex is used as the initial state. We also find conditions for the revival and the
charge conjugation of the vortex. In section 4 we consider the structure of the reduced state
of each mode. The paper ends with concluding remarks in section 5.

2. Generation of quantum entanglement and creation of a quantum vortex using an
initial two-mode Fock state

2.1. Evolution of the state vector

Let us consider the evolution of a two-mode Fock state |N − j, j 〉 when the Hamiltonian is
given by (1) and the total number (N) of photons in the two modes is constant. The resulting
state |ψNj (t)〉 = U(t)|N − j, j 〉 can be obtained by the use of the disentangling theorem. In
what follows, we use a different method. We write |N − j, j 〉 as

|N − j, j 〉 = (â†)N−j (b̂†)j√
N − j !j !

|0, 0〉 (9)

and define a new pair of operators(
â(t)

b̂(t)

)
= U †(t)

(
â

b̂

)
U(t), (10)

where U(t) = exp(−iHt) is the time evolution operator. Then |ψNj (t)〉 can be written in a
compact form as

|ψNj (t)〉 = [â†(−t)]N−j [b̂†(−t)]j√
N − j !j !

|0, 0〉. (11)

Note that the state at time t is obtained by using the operators evaluated at time −t . The
explicit expressions for â(t) and b̂(t) can be obtained by solving the Heisenberg equations for
the operators. We get(

â(t)

b̂(t)

)
= V

(
â(0)

b̂(0)

)
= V

(
â

b̂

)
(12)
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where V = {vij } is a 2 × 2 unitary matrix. Setting σ =
√

�2 + g2 and � = σ cos �, the
matrix elements are written as

v11 = cos σ t − i cos � sin σ t, v12 = −i eiφ sin � sin σ t,

v21 = −i e−iφ sin � sin σ t, v22 = cos σ t + i cos � sin σ t.
(13)

Note that

v11 = v∗
22, v12 = −v∗

21 and |v21|2 + |v22|2 = 1. (14)

Substitution in (11) followed by binomial expansion and the use of (9) yields

|ψNj (t)〉 =
N−j∑
m=0

j∑
n=0

bmn|N − (m + n),m + n〉 (15)

where

bmn =
(

N − j

m

)(
j

n

)(
N

N − j

)1/2(
N

m + n

)−1/2

(v11)
N−j−m(v21)

m(v12)
j−n(v22)

n. (16)

The two modes in the state |ψNj 〉 are entangled in the sense that the above double sum cannot
be reduced to the product of two single-mode summations.

It is instructive to briefly mention the case when the two modes are initially in a Glauber
coherent state |α, β〉. Since the Hamiltonian (1) conserves photon numbers, the state at time t
will also be a coherent state:

U(t)|α, β〉 = |α(t), β(t)〉. (17)

Applying (12) on |α, β〉, we immediately obtain(
α(t)

β(t)

)
= V

(
α

β

)
. (18)

Furthermore, the unitarity of V ensures that

|α(t)|2 + |β(t)|2 = |α|2 + |β|2. (19)

Thus no entanglement occurs if each input mode is in a coherent state.
In what follows, we exploit coherent states as generating functions of number states to

reduce the double sum in (15) to a single sum. Expanding both sides of (17) in number states
and recalling that |α(t)|2 + |β(t)|2 = |α|2 + |β|2, we get the relation∑

m

∑
n

αmβn

√
m!n!

U(t)|m, n〉 =
∑

p

∑
q

αp+q

√
p!q!

ξpq(τ )|p, q〉 (20)

where τ = β/α and

ξpq(τ ) = (v11 + v12τ)p(v21 + v22τ)q =
p+q∑
k=0

τ k

k!
∂(k)
τ ξpq(τ )�τ→0. (21)

Substituting in (20) and equating the coefficient of αN−jβj , one gets

|ψNj (t)〉 = U(t)|N − j, j 〉 =
N∑

q=0

C
(q)

Nj |N − q, q〉 (22)

where

C
(q)

Nj = 1

j !

[
(N − j)!j !

(N − q)!q!

]1/2

∂(j)
τ ξN−q,q(τ )�τ→0. (23)

Some useful properties of
∣∣C(q)

Nj

∣∣2
are derived in appendix A.
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2.2. The wavefunction—a coherent superposition of vortex states

The corresponding wavefunction in configuration space is obtained as follows. Using the
relation

〈y|q〉 = e−y2/2Hq(y)√
2qq!

√
π

, Hq(y) = (−1)q ey2
∂(q)
y e−y2

, (24)

and the corresponding expression for 〈x|N − q〉, we obtain

ψNj (x, y, t) = 〈x, y|U(t)|N − j, j 〉

= e−(x2+y2)/2

√
π2N

N∑
q=0

C
(q)

Nj

HN−q(x)Hq(y)√
(N − q)!q!

= (−1)N e(x2+y2)/2

√
π2N

N∑
q=0

C
(q)

Nj

∂
N−q
x ∂

q
y e−(x2+y2)

√
(N − q)!q!

. (25)

The wavefunction has a more appealing form in polar coordinates as shown below. Writing
x = r cos θ, y = r sin θ , and defining

γ±(τ ) = v11 + v12τ ± i(v21 + v22τ), (26)

we get (see appendix B)

ψNj (x, y, t) =
N∑

n=0

b
(n)
Nj uN−n,n(r, θ) (27)

where

b
(n)
Nj = 1

j !

√
(N − j)!j !

(N − n)!n!2N
ζ

(j)

Nn(0) ζNn(τ ) = γ+(τ )N−nγ−(τ )n

ζ
(j)

Nn(0) = ∂j
τ ζNn(τ )�τ→0 umn(r, θ) = uLG

mn(x, y,
√

2).

(28)

Recall that for m �= n, umn(r, θ) represents a vortex of order |m − n| and charge m − n

embedded in a Gaussian host beam of waist ω = √
2. Thus for odd values of N, the

wavefunction ψNj (x, y, t) becomes a coherent superposition of vortex states, whereas for
even values of N, the superposition will also contain a state (corresponding to n = N/2) that
does not have a vortex character [25].

2.3. Creation of a single quantum vortex

In this section we will derive conditions for the creation of a single quantum vortex. We
reiterate that for light fields, the vortex will appear in the quadrature distribution whereas for
other systems it will be in the probability distribution in configuration space.

The initial two-mode Fock state can evolve into a single vortex state when the summation
in (27) collapses into a single term. This happens whenever γ+(0) or γ−(0) is zero. It is easy
to show that |v21|2 = 1/2 for both these cases.

If γ+(0) = 0, then v11 + iv21 = 0 and taking the complex conjugate of this
equation, v22 + iv12 = 0. Then γ+(τ ) = 2v12τ and γ−(τ ) = −2iv21 so that ζ

(j)

Nn(0) =
(2v12)

N−n(−2iv21)
nj !δN−j,n and, finally,

ψNj (x, y, t)�γ+(0)=0 = 2N/2ij−Nv
N−j

21 v
j

12uj,N−j (r, θ). (29)

The condition γ+(0) = 0 implies that � = −g sin φ and σ cos σ t = −g cos φ sin σ t . We give
two examples for which these conditions are satisfied.
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(i) Setting � = 0, φ = π and σ t = π/4, we get

ψNj (x, y, t) = ijuj,N−j (r, θ). (30)

From (22), one obtains the corresponding state vector

U0|N − j, j 〉 =
N∑

q=0

D
(q)

Nj |N − q, q〉 (31)

where

U0 = exp
[ iπ

4
(a†b + ab†)

]
(32)

and

D
(q)

Nj = C
(q)

Nj ��=0,φ=π,σ t=π/4

=
√

(N − j)!j !

2N(N − q)!q!

iq

j !

[
∂j
τ (1 + iτ)N−q(1 − iτ)q

]
τ→0. (33)

(ii) Setting � = g, φ = −π/2 and σ t = π/2, we get

ψNj (x, y, t) = (−i)j+Nuj,N−j (r, θ). (34)

The operator form of the corresponding state vector is given by4

exp

[
iπ

2
√

2
{i(a†b − ab†) − (a†a − b†b)}

]
|N − j, j 〉. (35)

Following a similar analysis for γ−(0) = 0, one obtains

ψNj (x, y, t)�γ−(0)=0 = 2N/2iN−j v
N−j

21 v
j

12uN−j,j (r, θ). (36)

The condition γ−(0) = 0 yields � = g sin φ and σ cos σ t = g cos φ sin σ t . These two
conditions are satisfied , for example, when � = φ = 0 and σ t = π/4. The corresponding
wavefunction is the complex conjugate of (30).

We end this section by noting that the above conditions can be physically realized for a
given entangling device. We give an example in the context of a frequency converter. Suppose
the signal (of frequency ωa) and the idler (of frequency ωb) are initially in Fock states and the
converter is pumped at the difference frequency ωa − ωb. Replacing t by L/c, where L is the
length of the non-linear medium and c is the speed of light, one can adjust the pump amplitude
such that gL/c = π/4. This set-up corresponds to � = φ = 0 and gt = π/4. In this case
the quadrature distribution of the output state will be a single quantum vortex as mentioned
above.

2.4. Entanglement of the two modes

Initially the two modes are not entangled as the state vector |N − j, j 〉 is the direct product
of the state vectors for each mode. In configuration space, this would imply that ψNj (x, y, 0)

is separable in x and y as indeed it is. Furthermore, as the time dependence arises solely
in vij which vary as cos σ t or sin σ t , the initial state is revived whenever σ t = kπ, where
k is an integer. For even values of k, the revival is exact whereas for odd values of k, it is
within an overall factor of (−)N . At other times, the two modes are entangled as is evident in
expression ((15) or (22)) for the state vector and expression ((25) or (27)) for the corresponding
wavefunction.
4 Although relation (31) has been derived earlier in a different context [22], relation (35) has not been reported in the
literature to the best of our knowledge.
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Figure 1. Plot of S
(a)
Nj as a function of |v21|2 for N = 4 and j = 0, 1, 2.

2.5. Degree of entanglement

Note that the two-mode system |ψNj (t)〉 is in a pure state whereas the reduced state of each
mode, determined by a partial trace operation, will be a mixed state. The reduced density
operators of modes ‘a’ and ‘b’ are given respectively by

ρ
(a)
Nj = Trb|ψNj 〉〈ψNj | =

N∑
q=0

∣∣C(q)

Nj

∣∣2|q〉〈q| (37a)

ρ
(b)
Nj = Tra|ψNj 〉〈ψNj | =

N∑
q=0

∣∣C(N−q)

Nj

∣∣2|q〉〈q|. (37b)

The corresponding von Neumann entropies S
(a)
Nj and S

(b)
Nj provide a measure of the degree of

entanglement between the two modes:

S
(a)
Nj = −

N∑
q=0

∣∣C(q)

Nj

∣∣2
log

∣∣C(q)

Nj

∣∣2
(38a)

S
(b)
Nj = −

N∑
q=0

∣∣C(N−q)

Nj

∣∣2
log

∣∣C(N−q)

Nj

∣∣2
. (38b)

By virtue of relations (A.4), we get

S
(a)
Nj

⌋
|v21|2→1−R

= S
(a)
Nj

⌋
|v21|2→R

= S
(a)
N,N−j

⌋
|v21|2→R

. (39)

Changing the summation index from q to N − q in the expression for S
(b)
Nj , one obtains

S
(a)
Nj = S

(b)
Nj . Thus the symmetry relations (39) hold good for S

(b)
Nj as well. These observations

hold for any bipartite system in a pure state.
It is remarkable that for a given value of N, j and q, the dynamics of

∣∣C(q)

Nj

∣∣2
depends on

|v21|2 = sin2 � sin2 σ t only (see appendix A). This important observation implies that (a) the
entropy S

(a)
Nj and the reduced density operator ρ

(a)
Nj are independent of φ and (b) are symmetric

with respect to the interchange of � and σ t . In figure 1, we plot S
(a)
Nj as a function of |v21|2

for N = 4 and j = 0, 1, 2.
Trivially, for |v21|2 = 0, the initial pure state |N − j, j 〉 either does not evolve or is fully

revived and the entropy of the reduced state is zero. For |v21|2 = 1, the initial state swaps
the photon numbers in the two modes and becomes |j,N − j 〉 which is also a pure state. For
all other values of |v21|2, the initially pure state becomes a mixed state and the entropy of the
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Figure 2. Plot of S
(a)
Nj as a function of j for |v21|2 = 1/2 and a given total number of photons N.
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Figure 3. Plot of S
(a)
Nj as a function of N for |v21|2 = 1/2 and j = 0, 1, N/2.

reduced state becomes non-zero. Recall that for |v21|2 = 1/2 and N − j �= j , the quantum
state becomes a vortex. Thus a quantum vortex is indeed an entangled state. To quantify the
degree of entanglement for a vortex state, we plot S

(a)
Nj as a function of j for |v21|2 = 1/2

and a given total number of photons N (see figure 2). It is clear that the entropy of the state
without a vortex (j = N/2) is less than the entropy of the neighbouring (j ∼ N/2) vortex
states (N − j �= j). This reduction in entropy can be attributed to the symmetry of the
j = N/2 state and traced to the highly oscillatory nature of the Jacobi polynomial appearing
in equation (A.5). For a given value of N, the minimum in the entropy of a vortex state occurs
for j = 0, N in which case

∣∣C(q)

Nj

∣∣2
is a binomial distribution (see appendix A). Interestingly,

for j = 0, N , the vortex state will have the maximum allowed order (N). Thus the vortex state
of maximum order will have minimum entropy which is counter-intuitive. One would have
expected that the more twists the phase of the state has, more energetic and more entropic it
would be. Note that the symmetry of S

(a)
Nj about |v21|2 = 1/2 in figure 1 and about j = N/2

in figure 2 is contained in the relations (39). Note also that the vorticity or non-vorticity of the
state of lowest entropy depends on the value of N (see figure 3).

We end this section by comparing the entropy values in figures 1–3 with log2(N + 1), the
maximum entropy possible for a given N with an entirely mixed state. For N = 4, 10 and
100, log2(N + 1) has the values 2.321 93, 3.459 43 and 6.658 21, respectively.

3. Evolution of an initial vortex state

3.1. Evolution of the state vector

Let us assume that the two modes are initially in a quantum vortex state as in (31). Then the
state vector at time t will be given by

|ψ̃Nj (t)〉 = U(t)U0|N − j, j 〉. (40)
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Proceeding as in section 2.1, we define(
â(t)

b̂(t)

)
= [U(t)U0]†

(
â

b̂

)
[U(t)U0] (41)

and obtain (
â(t)

b̂(t)

)
= V

(
â(0)

b̂(0)

)
. (42)

Note, however, that in this case,(
â(0)

b̂(0)

)
= U

†
0

(
â

b̂

)
U0 = W

(
â

b̂

)
, W = 1√

2

(
1 i
i 1

)
. (43)

Thus (
â(t)

b̂(t)

)
= Ṽ

(
â

b̂

)
, Ṽ = VW. (44)

The action and the effect of the unitary operator U0 are now clear. U0 transforms the two-
mode Fock state into a different initial state before its time evolution begins and thus U0 can
be regarded as the operator for initial state preparation. The effect of U0 is contained in
the unitary matrix W. As a result, the overall unitary evolution matrix changes from V to
Ṽ = VW.

In the present case, U0, as given by (32), prepares a quantum vortex state as the initial
state and the corresponding expression for W is given as in (43). A different expression for
U0 will generate an initial state that is different from a quantum vortex. Yet for all these initial
states the dynamics is essentially solved once the corresponding dynamics for a two-mode
Fock state is worked out as in section 2.1. In each case, one need only calculate the matrix
W and replace V by Ṽ. In this sense, our theory not only provides a unified approach to
entanglement through a generic Hamiltonian but also promises wide applicability to a variety
of initial states.

In the present case, the matrix elements of Ṽ = {ṽij } are obtained easily as

ṽ11 = (v11 + iv12)/
√

2, ṽ12 = (v12 + iv11)/
√

2,

ṽ21 = (v21 + iv22)/
√

2, ṽ22 = (v22 + iv21)/
√

2.
(45)

Using (14), one can also show that

ṽ11 = ṽ∗
22, ṽ12 = −ṽ∗

21 and |ṽ21|2 + |ṽ22|2 = 1. (46)

It is now trivial to obtain the wave vector and the wavefunction by borrowing the
corresponding results from the previous section. We simply replace vij by ṽij for i, j = 1, 2
and, for the sake of clarity and comparison, use the same nomenclature for the new expressions
except for a˜(tilde) over them. Thus

|ψ̃Nj (t)〉 =
N∑

q=0

C̃
(q)

Nj |N − q, q〉 (47)

where

C̃
(q)

Nj = 1

j !

[
(N − j)!j !

(N − q)!q!

]1/2

∂(j)
τ ξ̃N−q,q(τ )�τ→0 (48a)

ξ̃pq(τ ) = (ṽ11 + ṽ12τ)p(ṽ21 + ṽ22τ)q . (48b)
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Furthermore, the results of appendix A can be used to write

∣∣C̃(q)

Nj

∣∣2 = (N − j)!(N − q)!q!(j !)−1(1 − |ṽ21|2)N
( |ṽ21|2

1 − |ṽ21|2
)q−j ∣∣f (q)

Nj (|ṽ21|2)
∣∣2

(49)

=
{

δq,j , |ṽ21|2 → 0,

δq,N−j , |ṽ21|2 → 1,
(50)

and ∣∣C̃(q)

Nj

∣∣2⌋
|ṽ21|2→1−R

= ∣∣C̃(N−q)

Nj

∣∣2⌋
|ṽ̃21|2→R

= ∣∣C̃(q)

N,N−j

∣∣2⌋
|ṽ21|2→R

. (51)

3.2. The wavefunction

The corresponding wavefunction in configuration space can be read off from equation (27).
We get

ψ̃Nj (x, y, t) =
N∑

n=0

b̃
(n)
Nj uN−n,n(r, θ), (52)

where

b̃
(n)
Nj = 1

j !

√
(N − j)!j !

(N − n)!n!2N
ζ̃

(j)

Nn(0) (53a)

ζ̃Nn(τ ) = γ̃+(τ )N−nγ̃−(τ )n (53b)

γ̃±(τ ) = ṽ11 + ṽ12τ ± i(ṽ21 + ṽ22τ). (53c)

Thus a quantum vortex state evolves into a superposition of vortex states under the action
of the Hamiltonian (1).

3.3. Revival and charge conjugation

It can be shown that if γ̃+(0) or γ̃−(0) is zero, then the summation in (52) reduces to a single
term. Specifically, if γ̃+(0) = 0, then Im v21 = Im v22 = 0 and

ψ̃Nj (x, y, t) = (iv)jv∗N−j
uj,N−j (r, θ) (54)

with v = Re v22 + i Re v21. The above conditions are satisfied for the following cases: (a)
sin σ t = 0 for arbitrary values of � and φ. This includes the initial state (t = 0) and the state
upon revival (σ t = π). (b) sin � = sin φ = 1 for arbitrary time. In this case the initial vortex
state becomes an eigenstate of the corresponding Hamiltonian.

On the other hand, if γ̃−(0) = 0, then Re v21 = Re v22 = 0 and

ψ̃Nj (x, y, t) = (v)j (−iv∗)N−juN−j,j (r, θ) (55)

with v = Im v22 + i Im v21. Note that uN−j,j (r, θ) = u∗
j,N−j (r, θ) and thus γ̃−(0) = 0 is

the condition for ‘charge conjugation’ or ‘helicity reversal’ of the initial vortex state. This
condition is fulfilled whenever sin � sin φ = 0 and cos σ t = 0.



11514 G S Agarwal and J Banerji

3.4. Degree of Entanglement in the superposition state (52)

The reduced density operator of mode ‘a’ and the corresponding von Neumann entropy are
given respectively by

ρ̃
(a)
Nj = Trb|ψ̃Nj 〉〈ψ̃Nj | =

N∑
q=0

∣∣C̃(q)

Nj

∣∣2|q〉〈q| (56a)

S̃
(a)
Nj = −

N∑
q=0

∣∣C̃(q)

Nj

∣∣2
log

∣∣C̃(q)

Nj

∣∣2
. (56b)

It is clear that S̃
(a)
Nj will depend on |ṽ21|2 in exactly the same way as S

(a)
Nj does on |v21|2

except that the form of |ṽ21|2 as a function of �,φ and σ t is quite different from |v21|2.
Notably, |ṽ21|2 depends on φ while |v21|2 does not. Explicitly,

|ṽ21|2 = 1
2 − sin � sin σ t (cos φ cos σ t − sin φ cos � sin σ t). (57)

3.5. A case of constant entropy

Note that if � = φ = π/2 or � = 0, then |ṽ21|2 = 1/2 so that
∣∣C̃(q)

Nj

∣∣2
and the entropy S̃

(a)
Nj

will not evolve with time. The underlying reason is as follows.
Using expressions (2) for the SU(2) generators, we obtain

J3|N − q, q〉 = N − 2q

2
|N − q, q〉. (58)

Noting that U0, as given by (32), can be written as U0 = exp(iπJ1/2) and using the relation
J2 = U0J3U

†
0 , we also get

J2U0|N − j, j 〉 = N − 2j

2
U0|N − j, j 〉 (59)

For � = φ = π/2, the Hamiltonian reduces to H = −2gJ2 for which U0|N − j, j 〉 becomes
an eigenstate by virtue of (59).

The condition � = 0 corresponds to g = 0 and the Hamiltonian reduces to 2�J3.
From (31), (40) and (47), one then immediately obtains C̃

(q)

Nj = exp(−i�t[N−2q])D(q)

Nj so that∣∣C̃(q)

Nj

∣∣2
, and consequently, the entropy S̃

(a)
Nj become independent of time. The corresponding

wavefunction is given by (52) where the coefficients b̃
(n)
Nj have the value

b̃
(n)
Nj = N !

j !

(
N

j

)−1/2(
N

n

)−1/2

(−i)N−n(sin �t)N−n+j (cos �t)n−j f
(n)
Nj (cos2 �t). (60)

It is interesting that although
∣∣C̃(q)

Nj

∣∣2
and the entropy S̃

(a)
Nj remain constant for � = 0, the

initial vortex state will continue to evolve with time, as shown in figure 4 [27]. For N = 4
and j = 0, the initial state at t = 0 (figure 4(a)) corresponding to cos2 �t = 1.0 is a vortex
of order 4 and charge −4 as given by equations (30) and (31). Recall that � = σ cos �.
Thus � = 0 corresponds to � = σ . Furthermore, if cos2 �t = 0.0, then, with � = 0, the
conditions for charge conjugation as given below equation (55) are satisfied and we obtain
the complex conjugate of the initial vortex. For cos2 �t = 0.5, it is more convenient to use
Cartesian co-ordinates. Using the expression for C̃

(q)

Nj as given above and the configuration
space representation of number states as given by (24), one can use the summation theorem
for Hermite polynomials [26] to obtain
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(a) (b) (c) (d)

Figure 4. Time evolution of an initial vortex state for � = 0 even though the entropy S̃
(a)
Nj remains

constant. Shown here are the contour plots of the absolute square (top row) and the phase (bottom
row) of ψ̃Nj (x, y, t) as functions of x and y at different times with b

(n)
Nj as given in (60). Here,

N = 4, j = 0 and cos2 �t has the values (a) 1.0, (b) 0.9, (c) 0.5 and (d) 0.0. The horizontal and the
vertical axes refer to the x and y coordinates, respectively. For the phase plots, we have used the
convention that the phase ranges from −π to π . Note that for cos2 �t = 0 the state becomes
the complex conjugate of the initial state as the direction of phase change is reversed.

ψ̃40(x, y, t)��t= π
4

= −e−(x2+y2)/2

√
π244!

H4

(
x − y√

2

)
(61a)

= e−(x2+y2)/2

√
24π

[−(x − y)4 + 6(x − y)2 − 3]. (61b)

Thus, the wavefunction is a Gaussian modulated by a Hermite polynomial. Clearly, its value
is real and, therefore, its phase is either zero or π depending respectively on whether the
wavefunction is �0 or negative. It is easy to show that the wavefunction vanishes whenever
(x − y)2 = 3 ± √

6. Finally, it may be of some interest to realize that the wavefunction
corresponds to a SU(2) coherent state −|τ,N〉 in the Schwinger representation [27] with
τ = −1 and N = 4.

4. Structure of the reduced state

In order to determine the structure of the reduced state for each mode, we first consider the
correlation function in the x-space of mode ‘a’ given by 〈x|ρ(a)

Nj |y〉. A classical analogue of
this function is the mutual coherence function of a partially coherent source [28]. Thus the
process of reduction of a pure two-mode state into a mixed state by a partial trace operation
over one mode amounts to loss of coherence and information. We can also define the spatial
coherence function γ

(a)
Nj (l) for the reduced state by

γ
(a)
Nj (l) =

∫
〈x|ρ(a)

Nj |x + l〉 dx. (62)

When the system is initially in a two-mode Fock state, one obtains

〈x|ρ(a)
Nj |y〉 =

N∑
q=0

∣∣C(q)

Nj

∣∣2

2qq!
√

π
e−(x2+y2)/2Hq(x)Hq(y). (63)
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(a) (b) (c) (d ) (e)

Figure 5. Contour plots of the correlation function as a function of x and y for different values of
|v21|2. The parameters are as follows: N = 8; j = 0 (top row), j = 4 (bottom row); |v21|2 has
the values (a) 1.0, (b) 0.9, (c) 0.5, (d) 0.1 and (e) 0.0. The horizontal and the vertical axes refer to
the x and y coordinates, respectively.

The corresponding expression for γ
(a)
Nj (l) is obtained by evaluating the standard integral [26]

in (62). We get

γ
(a)
Nj (l) =

N∑
q=0

∣∣C(q)

Nj

∣∣2
e−l2/4Lq(l

2/2) (64)

where Lq(x) = L0
q(x) is a Laguerre polynomial. Note that only one term survives in the

summations over q by virtue of (A.3) whenever |v21|2 = 0 or 1. Thus

〈x|ρ(a)
Nj |y〉 = e−(x2+y2)/2

√
π




Hj(x)Hj (y)

2j j !
, |v21|2 → 0,

HN−j (x)HN−j (y)

2N−j (N − j)!
, |v21|2 → 1,

(65)

and

γ
(a)
Nj (l) = e−l2/4




Lj(l
2/2), |v21|2 → 0,

LN−j (l
2/2), |v21|2 → 1.

(66)

Furthermore, one can use equation (A.4) and the definition (37a) to get

〈x|ρ(a)
Nj |y〉�|v21|2→1−R = 〈x|ρ(a)

N,N−j |y〉�|v21|2→R (67a)

γ
(a)
Nj (l)

⌋
|v21|2→1−R

= γ
(a)
N,N−j

⌋
|v21|2→R

. (67b)

When the system is initially in a vortex state, equations (63)–(67b) are still valid provided
that |v21|2 is replaced by |ṽ21|2. In figure 5 we present contour plots of the correlation function
as a function of x and y for a set of values of |v21|2 when N = 8 and j = 0 (top row),
j = 4 (bottom row). The intricate patterns for |v21|2 = 0 and 1 can be explained by using
equation (65). Furthermore, the identical nature of patterns for N = 8, j = 4 on either side
of |v21|2 = 1/2 can be attributed to the property (67a). Finally in figure 6 we plot γ

(a)
Nj (l)

as a function of l and |v21|2 when N = 4 and j = 0, 2. The patterns for |v21|2 = 0 and 1
follow from equation (66) and the symmetry of the plot for j = 2 about |v21|2 = 1/2 follows
from (67b).
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(a) (b)

Figure 6. Contour plot of γ
(a)
Nj (l) as a function of l and |v21|2 when N = 4 and j = 0 (left), j = 2

(right).

5. Conclusion

In conclusion, we have studied, in a general way, entanglement produced in a two-mode
bosonic system by linear SU(2) transformations leading to the generation and evolution of
quantum vortex states. The linear SU(2) transformations are generated by evolving the system
under the action of a generic Hamiltonian that mimics a variety of entanglement mechanisms.
We have demonstrated that these transformations produce a coherent superposition of quantum
vortices in general, and a single quantum vortex under certain conditions. Furthermore, as
one would expect, a vortex state is found to be an entangled state. When the system is a light
field, the vortex will appear in the quadrature distribution that can be measured by a homodyne
method [21]. Explicit analytical results were obtained when the system was initially either in
a Fock state or in a quantum vortex state. In the latter case, we have also found conditions for
its revival and charge conjugation. A simple recipe was provided to accommodate all other
cases for which the initial state can be reached from a Fock state by a unitary transformation.
Thus we not only provide a unified approach to entanglement through a generic Hamiltonian
but also predict the wide applicability of our results to a variety of initial states.

The ideas developed in this paper can be applied not only to light fields but also to matter
waves such as the Bose Einstein condensates (BEC). In recent years, the BEC has proved
to be an excellent laboratory for studying (both bipartite and many-particle) entanglement
[29–33]. The entanglement of the modes as well as the entanglement of the atoms in a BEC
have been considered. We mention parenthetically that our work is relevant in the former case.
It is also well known that several mechanisms exist for the generation of vortices in a BEC
[34–37]. Additionally, Whyte et al [38] have used the similarity between BECs and laser light
to propose a method for generating Hermite–Gaussian type modes in a so-called light pulse
resonator. Thus it should indeed be possible to generate vortices in a two-component BEC
by entangling the two modes of the BEC by linear SU(2) transformations via an entangling
device such as a beam splitter.
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Appendix A. Some useful properties of
∣∣C(q)

Nj

∣∣2

Using Leibniz’s rule for the j th derivative of a product and the relations (14), one obtains∣∣C(q)

Nj

∣∣2 = (N − j)!(N − q)!q!(j !)−1(1 − |v21|2)N
( |v21|2

1 − |v21|2
)q−j ∣∣f (q)

Nj (|v21|2)
∣∣2

(A.1)

with

f
(q)

Nj (|v21|2) =
j∑

k=0

(−1)k
(
j

k

)
(N − q − k)!(q − j + k)!

( |v21|2
1 − |v21|2

)k

. (A.2)

It is easy to show that

∣∣C(q)

Nj

∣∣2 =



δq,j , |v21|2 → 0,

δq,N−j , |v21|2 → 1.
(A.3)

Next we derive some important symmetry properties of
∣∣C(q)

Nj

∣∣2
. First we show that

f
(q)

Nj (1 − R) = (−1)j
(

1 − R

R

)j

f
(N−q)

Nj (R)

f
(q)

N,N−j (R) = (−1)N−q (N − j)!

j !

(
R

1 − R

)N−q

f
(q)

Nj (1 − R)

where 0 � R � 1. The first relation is obtained from (A.2) by changing the summation
index from k to j − k and the second relation is proved by exploiting the non-negativity of the
factorials in (A.2) and changing the summation range accordingly. Using these two relations
we immediately get∣∣C(q)

Nj

∣∣2⌋
|v21|2→1−R

= ∣∣C(N−q)

Nj

∣∣2⌋
|v21|2→R

= ∣∣C(q)

N,N−j

∣∣2⌋
|v21|2→R

. (A.4)

Note that if |v21|2 = 1/2, then |v11|2 = |v22|2 = |v12|2 = 1/2 as well. Additionally, if
j = 0 or N, then

∣∣C(q)

Nj

∣∣2 = 2−N
(
N

q

)
is a binomial distribution whereas if j = N/2, then∣∣C(q)

N/2,N/2

∣∣2 = (N !)−1
[
(N/2)!P (N/2−q,q−N/2)

N/2 (0)
]2

(
N

q

)
(A.5)

where P
(α,β)
n (x) is a Jacobi polynomial.

Appendix B. Derivation of equation (27)

Substituting expression (23) for C
(q)

Nj in (25) and performing the summation over q before
differentiation with respect to τ , we get

ψNj (x, y, t) = (−1)N

N !

√
(N − j)!

j !2Nπ
e(x2+y2)/2

[
∂(j)
τ ÂN(τ ) e−(x2+y2)

]
τ→0 (B.1)

where

Â(τ ) = (v11 + v12τ)∂x + (v21 + v22τ)∂y. (B.2)

We introduce z = x + iy so that x2 + y2 = zz∗ and Â(τ ) = γ+(τ )∂z + γ−(τ )∂z∗ with γ± given
by (26). Next we expand Â(τ )N binomially and then use the relation

∂m
z ∂n

z∗ e−zz∗ =



(−1)nm! e−zz∗
zn−mLn−m

m (zz∗), m � n,

(−1)mn! e−zz∗
z∗m−nLm−n

n (zz∗), n � m,
(B.3)

to evaluate Â(τ )N e−(x2+y2). Collecting all the terms we finally obtain (27).
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